想要考试中取得优异的成绩,就要掌握解题技巧。那么高考数学的答题技巧与方法有哪些呢?以下是小编整理的一些关于高考数学的答题技巧与方法,仅供参考。
1、三角变换与三角函数的性质问题
解题方法:①不同角化同角;②降幂扩角;③化f(x)=asin(ωx φ) h ;④结合性质求解。
答题步骤:
①化简:三角函数式的化简,一般化成y=asin(ωx φ) h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx φ的范围求条件解得函数y=asin(ωx φ) h的性质,写出结果。
2、解三角形问题
解题方法:
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
答题步骤:
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
3、数列的通项、求和问题
解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
答题步骤:
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
4、离散型随机变量的均值与方差
解题思路:
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
答题步骤:
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。
重视三角恒等变换下的性质探究,重视考查图形图像的变换。
2、概率与统计
(1)古典概型。
(2)茎叶图。
(3)直方图。
(4)回归方程。
(5)(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能 性事件、互斥事件、独立事件的概率计算公 式,难度不算很大。
3、立体几何
(1)平行。
(2)垂直。
(3)角。
(4)利用三视图计算面积与体积。
(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。
4、数列
(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
(4)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。
(3)利用基本不等式、对勾函数性质。
区间法
这类方法也称为排除法,在答高考考数学选择题是,靠着大概计算出的数据或者猜一些数据。比如一个题目里给了几个角度,30°,90°。很明显,答案里就肯定是90±30度,120加减30度。或者一些与30,60,90度有关的答案。
代入法
这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。但是如果是选择题,你可以取a=0.5,b=1.5试一试。还有就是可以把选项里的答案带到题目中的式子来计算,也称倒推法。
坐标法
如果做的一些高考数学图形题完全找不到思路,第一可以用比例法,第二可以用坐标法,不用管什么三角函数,直接找到两点坐标,直接带入高中函数求角度(cos公式)求垂直,求长度,相切相离公式。直接直捣黄龙,不用一点点找角度做什么麻烦的事。